Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 30(20): 36087-36095, 2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36258545

RESUMO

Optical frequency combs based on semiconductor lasers are a promising technology for monolithic integration of dual-comb spectrometers. However, the stabilization of offset frequency fceo remains a challenging feat due the lack of octave-spanning spectra. In a dual-comb configuration, the uncorrelated jitter of the offset frequencies leads to a non-periodic signal resulting in broadened beatnotes with a limited signal-to-noise ratio (SNR). Hence, expensive data acquisition schemes and complex signal processing are currently required. Here, we show that the offset frequencies of two frequency combs can be synchronized by optical injection locking, which allows full phase-stabilization when combined with electrical injection locking of both repetition frequencies frep. A single comb line isolated via an optical Vernier filter serves as Master oscillator for injection locking. The resulting dual-comb signal is periodic and stable over thousands of periods. This enables coherent averaging using analog electronics, which increases the SNR and reduces the data size by one and three orders of magnitude, respectively. The presented method will enable fully phase-stabilized dual-comb spectrometers by leveraging on integrated optical filters and provides access for comparing and stabilizing fceo to narrow-linewidth optical references.

2.
Phys Rev Lett ; 127(9): 093902, 2021 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-34506198

RESUMO

Optical nonlinearities are known to coherently couple amplitude and phase of light, which can result in the formation of periodic waveforms. Such waveforms are referred to as optical frequency combs. Here we show that Bloch gain-a nonclassical phenomenon that was first predicted in the 1930s-can play an essential role in comb formation. We develop a self-consistent theoretical model that considers all aspects of comb dynamics: band structure, electron transport, and cavity dynamics. In quantum cascade lasers, Bloch gain gives rise to a giant Kerr nonlinearity, which enables frequency modulated combs and serves as the physical origin of the linewidth enhancement factor. Bloch gain also triggers the formation of solitonlike structures in ring resonators, paving the way toward electrically driven Kerr combs.

3.
Opt Lett ; 46(14): 3416-3419, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-34264227

RESUMO

Quantum cascade lasers (QCLs) facilitate compact optical frequency comb sources that operate in the mid-infrared and terahertz spectral regions, where many molecules have their fundamental absorption lines. Enhancing the optical bandwidth of these chip-sized lasers is of paramount importance to address their application in broadband high-precision spectroscopy. In this work, we provide a numerical and experimental investigation of the comb spectral width and show how it can be optimized to obtain its maximum value defined by the laser gain bandwidth. The interplay of nonoptimal values of the resonant Kerr nonlinearity and cavity dispersion can lead to significant narrowing of the comb spectrum and reveals the best approach for dispersion compensation. The implementation of high mirror losses is shown to be favorable and results in proliferation of the comb sidemodes. Ultimately, injection locking of QCLs by modulating the laser bias around the round trip frequency provides a stable external knob to control the frequency-modulated comb state and recover the maximum spectral width of the unlocked laser state.

4.
Opt Express ; 29(4): 5774-5781, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33726109

RESUMO

Quantum cascade detectors (QCD) are photovoltaic mid-infrared detectors based on intersubband transitions. Owing to the sub-picosecond carrier transport between subbands and the absence of a bias voltage, QCDs are ideally suited for high-speed and room temperature operation. Here, we demonstrate the design, fabrication, and characterization of 4.3 µm wavelength QCDs optimized for large electrical bandwidth. The detector signal is extracted via a tapered coplanar waveguide (CPW), which was impedance-matched to 50 Ω. Using femtosecond pulses generated by a mid-infrared optical parametric oscillator (OPO), we show that the impulse response of the fully packaged QCDs has a full-width at half-maximum of only 13.4 ps corresponding to a 3-dB bandwidth of more than 20 GHz. Considerable detection capability beyond the 3-dB bandwidth is reported up to at least 50 GHz, which allows us to measure more than 600 harmonics of the OPO repetition frequency reaching 38 dB signal-to-noise ratio without the need of electronic amplification.

5.
Nat Commun ; 11(1): 5788, 2020 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-33188222

RESUMO

Quantum cascade lasers (QCL) have revolutionized the generation of mid-infrared light. Yet, the ultrafast carrier transport in mid-infrared QCLs has so far constituted a seemingly insurmountable obstacle for the formation of ultrashort light pulses. Here, we demonstrate that careful quantum design of the gain medium and control over the intermode beat synchronization enable transform-limited picosecond pulses from QCL frequency combs. Both an interferometric radio-frequency technique and second-order autocorrelation shed light on the pulse dynamics and confirm that mode-locked operation is achieved from threshold to rollover current. Furthermore, we show that both anti-phase and in-phase synchronized states exist in QCLs. Being electrically pumped and compact, mode-locked QCLs pave the way towards monolithically integrated non-linear photonics in the molecular fingerprint region beyond 6 µm wavelength.

6.
Nature ; 582(7812): 360-364, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32555484

RESUMO

Wave instability-the process that gives rise to turbulence in hydrodynamics1-represents the mechanism by which a small disturbance in a wave grows in amplitude owing to nonlinear interactions. In photonics, wave instabilities result in modulated light waveforms that can become periodic in the presence of coherent locking mechanisms. These periodic optical waveforms are known as optical frequency combs2-4. In ring microresonator combs5,6, an injected monochromatic wave becomes destabilized by the interplay between the resonator dispersion and the Kerr nonlinearity of the constituent crystal. By contrast, in ring lasers instabilities are considered to occur only under extreme pumping conditions7,8. Here we show that, despite this notion, semiconductor ring lasers with ultrafast gain recovery9,10 can enter frequency comb regimes at low pumping levels owing to phase turbulence11-an instability known to occur in hydrodynamics, superconductors and Bose-Einstein condensates. This instability arises from the phase-amplitude coupling of the laser field provided by linewidth enhancement12, which produces the needed interplay of dispersive and nonlinear effects. We formulate the instability condition in the framework of the Ginzburg-Landau formalism11. The localized structures that we observe share several properties with dissipative Kerr solitons, providing a first step towards connecting semiconductor ring lasers and microresonator frequency combs13.

7.
Phys Rev Lett ; 124(2): 023901, 2020 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-32004013

RESUMO

Coupled clocks are a classic example of a synchronization system leading to periodic collective oscillations. Already in 1665, Christiaan Huygens described this phenomenon as a kind of "sympathy" among oscillators. In this work, we describe the formation of two types of laser frequency combs as a system of oscillators coupled through the beating of the lasing modes. We experimentally show two completely different types of synchronization in a quantum dot laser-in-phase and splay-phase states. Both states can be generated in the same device, just by varying the damping losses of the system. This modifies the coupling among the oscillators. The temporal laser output is characterized using both linear and quadratic autocorrelation techniques. Our results show that both pulses and frequency-modulated states can be generated on demand within the same device. These findings allow us to connect laser frequency combs produced by amplitude-modulated and frequency-modulated lasers and link these to pattern formation in coupled systems such as Josephson-junction arrays.

8.
Opt Lett ; 43(8): 1746-1749, 2018 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-29652355

RESUMO

Compensating for group velocity dispersion is an important challenge to achieve stable midinfrared quantum cascade laser (QCL) frequency combs with large spectral coverage. We present a tunable dispersion compensation scheme consisting of a planar mirror placed behind the back facet of the QCL. Dispersion can be either enhanced or decreased depending on the position of the mirror. We demonstrate that the fraction of the comb regime in the dynamic range of the laser increases considerably when the dispersion induced by the Gires-Tournois interferometer compensates the intrinsic dispersion of the laser. Furthermore, it is possible to tune to the offset frequency of the comb with the Gires-Tournois interferometer while the repetition frequency is almost unaffected.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...